PREPRINT

This preprint is a PDF of a manuscript that has been accepted for publication in an ESA journal. It is the final version that was uploaded and approved by the author(s). While the paper has been through the usual rigorous peer review process of ESA journals, it has not been copy-edited, nor have the graphics and tables been modified for final publication. Also note that the paper may refer to online Appendices and/or Supplements that are not yet available. We have posted this preliminary version of the manuscript online in the interest of making the scientific findings available for distribution and citation as quickly as possible following acceptance. However, readers should be aware that the final, published version will look different from this version and may also have some differences in content.

The doi for this manuscript and the correct format for citing the paper are given at the top of the online (html) abstract.

Once the final published version of this paper is posted online, it will replace the preliminary version at the specified doi.
The siren song of a sticky plant: columbines provision mutualist arthropods by attracting and killing passerby insects.

E.F. LoPresti¹, ⁴; I.S. Pearse²; G.K. Charles³

¹ University of California - Davis, Department of Entomology, One Shields Ave., Davis, CA 95616
² Illinois Natural History Survey, 1816 S. Oak St. Champaign, IL 61820
³ University of California - Davis, Department of Plant Biology, One Shields Ave, Davis, CA 65616
⁴ Corresponding Author: lopresti.eric@gmail.com; Tel: 530 752 2800
ABSTRACT

Many plants provide predatory arthropods with food or shelter. Glandular trichomes entrap insects and may provision predators with insect carrion, though it has not been clear whether this putative benefit functions with natural amounts of carrion, whether plants actively attract insect “tourists”, and how common this provisioning system is. We tested the hypothesis that a sticky columbine (*Aquilegia eximia*: Ranunculaceae) attracts passerby arthropods (a siren song leading them to their demise); that these entrapped arthropods increased predators on the plant; and that these predators reduced damage to the plant. Sticky traps baited with columbine peduncles entrapped more arthropod carrion than unbaited control traps. Predator abundance correlated positively with carrion abundance observationally, and experimental removal of carrion reduced predator numbers. Experimental removal of carrion also increased damage to reproductive structures, likely due to reductions in predator numbers. This indirect defense may be common; we compiled a list of insect-trapping sticky plants which includes over 110 genera in 49 families, suggesting a widespread convergence of this trait, even in non-carnivorous plants. The ubiquity of this trait combined with these experiments suggest that carrion entrapment should be viewed as a common and active process mediated by the plant for indirect defense.

KEYWORDS: Indirect defense, carrion, columbine, herbivory, tritrophic interaction, sticky plant, *Aquilegia eximia*

INTRODUCTION

Plants often enlist helpers – mutualistic arthropods – to aid in defense against herbivores, pathogens and competitors (Janzen 1967, Heil 2008). Examples include acacias which provide shelter and food bodies to ants which deter herbivory (Madden and Young 2002) and *Viburnum*
species, which provide domatia and extra-floral nectar to predatory and mycophagous mites (Weber et al. 2012). Recent evidence suggests that arthropod carrion adhered to plant surfaces also provisions mutualistic predators (Ellis and Midgley 1996; Anderson 2005; Sugiura and Yamazaki 2006; Romero et al. 2008; Krimmel and Pearse 2013; Appendix A). Carrion provisioning usually begins with an adhesive surface, composed of glandular or hooked trichomes, which entraps insects (in addition to other functions of the trichomes). Predatory arthropods may seek out this carrion ephemerally or remain on plants with a reliable carrion food source. Predators then either repel (a nonconsumptive effect) or kill (a consumptive effect) herbivores. Thomas (1988) found that eliminating the sticky trap significantly reduced the abundance of the most common predator on *Cirsium discolor* (Asteraceae), but not on *Penstemon digitalis* (Plantaginaceae). In the most extensive test of this defense, Krimmel and Pearse (2013) demonstrated each of these links experimentally by adding insect carrion to *Madia elegans* (Asteraceae), and Romero et al. (2008) convincingly demonstrated predator-mediated herbivore-reduction on a sticky plant.

Two observations suggest that carrion provisioning of predators may be a common indirect plant defense. First, numerous predatory arthropods have a strong association with sticky glandular plants. Many of these arthropods complete their life-cycle on these plants, feeding at several trophic levels: on the plant, entrapped carrion, herbivores of the plant and other predators (e.g. Bérenger and Pluot-Sigwalt 1997; Anderson 2005; Romero et al. 2008; Voigt and Gorb 2008; Wheeler and Krimmel 2015). Second, a trend toward predator enrichment on carrion-covered plants has been shown in true carnivorous plants such as *Pinguicula* (Zamora 1990), and non-carnivorous plants such as the South African genus *Roridula* (Ellis & Midgley 1996, Anderson 2005), a glandular rhododendron (Sugiura and Yamazaki 2006), and a South American
bromeliad (Gonçalves et al. 2011). In both the bromeliad and _Roridula_ systems, at least some of predator enhancement benefit comes from nutrients supplied by their feces (Ellis and Midgley 1996, Gonçalves et al. 2011), though predators may also protect the plant from herbivores in these systems. While carrion acts as a potent provision to predators in certain systems, the frequency of this indirect defense remains unknown.

Currently, the strongest evidence supporting carrion-mediated indirect defense in plants comes from experiments that artificially added carrion to plants (Krimmel and Pearse 2013) or comparisons among plant species that entrap or do not entrap carrion (Romero et al. 2008).

Natural variation in glandularity and carrion abundance exists in and among individuals and populations of sticky plants (Krimmel and Pearse 2014), though it is unknown whether the natural amount of carrion on a plant enhances indirect defense above conspecifics that fail to trap carrion (or trap little).

Whether glandular plants actively attract and entrap insects or act as passive sticky traps is similarly unknown. Arthropods caught by carnivorous plants do not differ in abundance and identity from a simple passive trap (Ellison and Gotelli 2009), suggesting no attraction (but see Shaefer and Ruxton 2008). Although untested, many authors suggest this same passive entrapment in non-carnivorous species (Sutherst et al. 1982; Eisner et al. 1998; Suguiira and Yamakazi 2006). Indeed, non-interacting arthropods are referred to as “tourists” (Krimmel and Pearse 2013 after the terminology in Moran and Southwood 1982), suggesting little involvement with the plant (though creating a literal “tourist trap”). On the other hand, plants actively attract arthropods with volatile signals in a number of interactions including pollination (Raguso and Pichersky 1995) and defense by attraction of parasitoids (Van Poecke et al. 2001); this suggests a small evolutionary hurdle to attracting arthropods with which to provision predators. Because
plants may benefit from carrion indirectly, we hypothesized that plants might actively attract these small arthropods, much like sirens, figures of classic mythology who lured sailors to their deaths with sweet songs.

We conducted a study on an herbaceous, glandular columbine (*Aquilegia eximia*: Ranunculaceae) and conducted a literature survey of carrion entrapment by plants in order to establish 1) if columbine peduncles attract non-interacting arthropods, which become carrion, 2) whether carrion entrapped by sticky columbine enhances indirect defense, and 3) whether carrion entrapment is common among plants that are not known to be carnivorous.

METHODS

System. Serpentine columbine, *Aquilegia eximia* (Ranunculaceae), grows in seeps and wet areas of California’s northern coast range (Baldwin et al 2012). At the University of California Davis’s McLaughlin Reserve in Lake County, CA, columbine foliage grows from perennial rootstock in late winter, bolts in the spring and flowers until the early fall; hummingbirds and bees visit the hanging red flowers. Peduncles, leaves, petioles, buds, flowers and fruit of the plants are extremely sticky and by June are covered by carrion of a variety of arthropods numbering up to several hundred on a single peduncle (Fig. 1: D, pers. obs., Appendix B). The primary herbivore on the columbine is *Heliothis phloxiphaga* (Lepidoptera: Noctuidae), a common polyphagous caterpillar that feeds primarily on the reproductive structures (buds, flowers and fruit) of a variety of glandular plants at the site. A variety of omnivores, scavengers and predators live on the plants (Fig. 1), the most common being a stilt bug, *Hoplinus echinatus* (Heteroptera: Berytidae), an assassin bug, *Pselliopus spinicollis* (Heteroptera: Reduviidae), a mirid, *Tupiocoris californicus* (Heteroptera: Miridae) and a crab spider, *Mecaphesa schlingeri* (Thomisidae). All
true bugs were observed scavenging on entrapped carrion and we also observed consumed eggs of *Heliothis* and *Pselliopus* on the plants.

Attraction experiment. To determine whether the entrapped arthropods found on columbine peduncles were actively attracted to the plant by volatile cues, or had incidentally landed on the plant, we covered 9-cm diameter petri dishes with plastic mesh and placed inside three 5-cm sections of columbine peduncle, plus a single leaf, or nothing as a control. We coated the plastic mesh in a thin layer of Tanglefoot (ConTech Incorporated; Victoria, British Columbia, Canada), which in conjunction with the plastic mesh itself effectively eliminated visual cues of the columbine. We placed the petri dishes along the side of a small meadow (38.858848N, 122.432340W) where columbines naturally grow, alternating treatments for maximum interspersion. We spaced the petri dishes >1 meter from each other and > 5 meters from any columbines. After 24 hours, we assessed the number of arthropods (>1mm) caught on the surface of the plastic mesh. Over the course of nine sampling nights between 13-July and 6-Aug, we placed 258 traps consisting of equal numbers of both treatments each trial. One trap was blown over and removed from the study.

Carrion reduction experiment. To determine whether carrion mediated an indirect defense with predators, we conducted a carrion removal experiment on an isolated population of columbine (38.861694N, 122.430288W). On 2-July-2014, we marked 50 plants, alternating between two treatments. The first treatment was a carrion-reduction, where we removed all arthropod carrion of ~1 mm or larger from the entire peduncle with a pair of fine-tipped forceps. The second group was a control, which we handled as in the manipulated group, but from which we did not remove any carrion. We repeatedly applied these treatments to the plants (9-July, 17-July, 22-July, 31-July, 6-Aug, 17-Aug, 25-Aug, 1-Sept, 8-Sept and 19-Sept, treatments not reapplied the last two
dates), each time recording the number of carrion (except at set-up) and predators, and the number and status (damaged [=any chewing damage]/undamaged) of all reproductive structures (flower buds/flowers/fruit) on the plant.

Statistical analysis

We performed all analyses and prepared all figures in R vers. 3.0.2 (R Foundation for Statistical Computing) using package lme4 (Bates et al. 2014). For all statistical analyses, we checked data for oversdispersion and employed Poisson (for count data), negative binomial (for overdispersed count data) or binomial error distributions when appropriate. All reported means include standard error.

We performed two main analyses in our study. First we tested whether columbine volatile cues attracted arthropods. We evaluated the impact of columbine presence on arthropod count data using a generalized linear mixed-effect model (GLMM) with a Poisson error distribution. Our response variable was count of arthropods entrapped over a 24 hour period, with the independent variable of columbine presence or absence. Since we ran multiple traps each day and did this several times, we used date of trapping as a random effect with varying intercept.

Our second set of analyses quantified the effects of experimental carrion removal on predator abundance and damage to reproductive structures. We modeled the treatment effect of carrion removal on predator abundance using a GLMM with a negative binomial error and date as a random effect with varying intercept. When considering the growing season as a whole we calculated the mean predator abundance over all sampling dates, and we tested for an effect of carrion removal using a GLM with a quassipoisson error distribution (as means were not integers). We checked for non-additivity between observation date and treatment by considering
observation date as a continuous fixed factor and checked its interaction with treatment, which was a nonsignificant interaction with predator abundance.

To measure the effect of carrion removal on risk of damage to a given reproductive structure, we used a binomial response of either intact or damaged. We used a binomial GLMM with treatment and date as predictor variables, with plant ID as a random effect with a variable intercept. We allowed the slope of the treatment effect to vary by date. We checked for non-additivity between observation date and treatment by considering observation date as a continuous fixed factor and checking for its interaction with treatment. For damage to reproductive structures, a significant interaction was detected. We therefore assessed the effect of carrion removal treatment on reproductive structure damage for each observation date.

RESULTS

Survey of carrion-entrapping plants. Many taxonomically unrelated plants – over 110 genera in 49 families – entrap arthropods on adhesive surfaces (Table 1; Figure 1; Appendix A). A small subset of these plants utilize this resource directly as carnivores, absorbing nutrients from the carrion (e.g. the sundews, Drosera; Chase 2009). Another subset absorb nutrients from entrapped arthropods, either directly or indirectly, but are not considered carnivorous (Spomer 1999). However, most carrion-entrapping plants are not known to benefit directly from nutrients absorbed from carrion. Natural history observations from the published literature and the authors’ experiences with other sticky plants are summarized in Appendix A.

Carrion attraction experiment. Petri dishes baited with columbine peduncles entrapped ~21% more arthropods than controls (Poisson mixed model, date as a random effect, coefficient of treatment: $z = -2.22$, $p = 0.026$, sample size: control = 129, columbine = 128). Because the mesh
visually obstructed the columbine, this effect was likely due to a volatile cue of the columbine peduncles.

Carrion reduction experiment: The mean number of predators encountered per check was 74% higher in controls than on carrion-removal plants (Fig. 2), (negative binomial model, LR = 13.54, p < 0.001). Reproductive structures (flowers, flower buds, and fruits) of carrion-removed plants were more likely to sustain damage than those of control plants, especially in the latter half of the season (Fig. 2). Carrion removal the increased the chance of damage to reproductive structures. The odds of reproductive structures being damaged was 121% higher in the carrion removal treatment than in the control group (binomial mixed model, LR = 8.2 p = 0.04, 95% CI, odds 6-391%) which likely accounted for the marginally higher seeds per fruit found in the control group (Appendix C). However, in an initial test with both sampling date and carrion removal as fixed effects, we found that the effect of treatment depended on sampling date (date*treatment interaction, quaispoisson mixed model, $t_{1,151} = 2.301, p = 0.02$). Therefore, we looked for an effect of carrion removal on each sampling date, and found that carrion removal increased the probability of damage to reproductive structures in the final five observation dates, but not in the first five (Fig. 2).

DISCUSSION

Many diverse plants entrap arthropods on their surfaces (Table 1; Figure 1); this experiment demonstrated a “siren song” indirect defense of one of these plants. Columbines attracted and entrapped usually-noninteracting – neither herbivore nor predatory – arthropods, which increased predator presence on plants and reduced damage to the plant. Direct attraction of natural enemies of herbivores using volatile cues is a common defense strategy in plants (Kessler and Heil 2011); luring in non-interacting arthropods has not been reported previously for non-carnivorous plants.
Past studies have relied on species comparisons or carrion addition to suggest carrion-mediated indirect defense (Romero et al. 2008, Krimmel and Pearse 2013). Observationally, predators correlated with carrion abundance in a natural population (Appendix D) and in our experiment natural carrion abundance caused indirect resistance, suggesting that carrion provisioning operates with amounts of carrion observed in the field. We suggest that this ‘siren song’ – attraction of tourist arthropods – provisions beneficial natural enemies in order to retain their predator services.

Predators reduced damage in the experiment, though there was a lag between the time when damage was initiated and when an effect of the carrion-removal treatment was detected (Figure 2 & Appendix D). We believe that the natural history of the herbivores caused this lag. *Heliothis phloxiphaga* has more than one generation a year; the individuals of the first generation seemed to escape predation by provisioned predators, probably because these predators feed on eggs and small larvae, and these herbivores were already large when we initiated carrion treatments.

Carrion provisioning did reduce later herbivore damage, caused by second generation *H. phloxiphaga*. We did not test whether consumptive or nonconsumptive effects of the predators (Thaler and Griffin 2008) caused the reduction in herbivory. Predators may have deterred the mobile caterpillars from feeding on a plant, deterred ovipositing female moths or consumed eggs and early-star larvae.

In other systems, glandular trichomes act as a costly direct defense against herbivores (Hare et al. 2003) and impede the efficacy of predators (Eisner et al. 1998). While we did not explicitly test the effect of stickiness – our experiment manipulated only carrion – the experimental results suggest that these specialized predators are effective bodyguards on this plant; an exudate removal experiment, which also removed carrion, found the same results (Appendix E). The
same suite of predators are found on other glandular plants in the same habitat including Madia (Krimmel and Pearse 2013), and glandular Arctostaphylos, Hemizonia, Holocarpha, Calycidenia, Cordelanthus, Castilleja, Mimulus, Trichostema and Grindelia near the columbine populations (pers. obs.). This suggests this suite of predators are generalist feeders that are associated with glandular plants (Wheeler and Krimmel 2015), and may act in similar ways on all these plants.

Insect entrapment has evolved repeatedly in plants (Table 1). The phenomenon of insect entrapment is common, but rarely-reported. Roughly 50% of genus-level records of carrion entrapment in Table 1 are new to the literature, suggesting that the list of carrion-entrapping plants is vastly incomplete. Anecdotally, a brief trip to Chile by EFL added nine genera to this list, suggesting a great deal more await discovery, even in well-studied locations. The list includes many economically important horticultural and crop genera such as Petunia and Nicotiana, suggesting that this type of indirect defense may be applicable to pest management in agricultural systems (Krimmel 2014). In most of the listed genera, insect entrapment is a derived feature found in one or few species, often within large, widely-distributed genera (e.g. Asteraceae: Cirsium discolor; Lamiaceae: Salvia spp., Phyrnaceae: Mimulus spp.), though in some cases the trait is likely basal to several genera (e.g. Asteraceae: Madiinae: Kyhosia, Madia, Holocarpha, Hemizonia). The great majority of insect-entrapping plants have not been examined for this indirect resistance, and the simple methodology presented here could be easily adapted to many other systems. Adaptations to locomotion on sticky plants occur in various groups of arthropod predators worldwide (Voigt and Gorb 2008; Romero et al. 2008; Wheeler and Krimmel 2015). Glandular trichomes serve a variety of functions (LoPresti 2015). Carrion entrapment and this indirect defense may not be the selective agent responsible for the evolution
of this trait, and its benefit may be totally incidental. Further research should directly examine
fitness correlates as in Krimmel and Pearse (2013) to build a stronger adaptive case for
entrapment. In combination, the commonness of insect entrapment (Table 1), and experimental
evidence from four model systems: predator enrichment on thistle (Illinois: Asteraceae: Thomas
1988), predator enrichment and damage reduction in: columbine, (California, Ranunculaceae:
present study), Trichogoniopsis (Brazil, Asteraceae: Romero et al. 2008), and tarweed
(California, Asteraceae: Krimmel and Pearse 2013) suggest that carrion provisioning is
phylogenetically and geographically widespread.

In what may be a common indirect interaction in plants, columbines attracted and entrapped
small arthropods which either attracted or retained predators, reducing herbivore damage on
carrion-covered plants. The two prior tests of this indirect defense (Romero et al. 2008; Krimmel
and Pearse 2013) were on asters; this current experiment suggests a similar strategy in a
columbine. This was the first experiment demonstrating that non-carnivorous sticky plants attract
carrion, a novel yet logical extension of beneficial predator attraction to the carrion. We suggest
that this indirect defense strategy should be accepted as a normal consequence of stickiness in
plants despite the deterrence of generalist predators (Eisner et al. 1998; Hare et al. 2003, but see
Krimmel and Pearse 2014) and there exists an entire guild of phylogenetically and
geographically diverse predators on sticky plants (Romero et al. 2008; Krimmel and Pearse

ACKNOWLEDGMENTS

Z. Chapman, M. Niles, P. Grof-Tisza, S. Reismann and R. Karban assisted with field work. C.
Koehler, P. Aigner and Homestake mining company facilitated work at the McLaughlin reserve.
B. Krimmel, R. Karban and an anonymous reviewer gave useful comments on the experiment,
the manuscript, and sticky plants in general. Z. Chapman fastidiously edited the manuscript. E. LoPresti is funded by an NSF-GRFP and this work was supported by grants from the UC-Davis Natural Reserve System, the Center for Population Biology and the Jastro-Shields fund.

LITERATURE CITED

Ellison, A. M. and N. J. Gotelli. 2009. Energetics and the evolution of carnivorous plants-
Darwin's 'most wonderful plants in the world'. Journal of Experimental Botany 60:19-42.

seasonal and interspecific variation in plant performance. *Annals of Botany*, 107, 1047-
1055

Hare, J. D., E. Elle, and N. M. van Dam. 2003. Costs of glandular trichomes in *Datura wrightii*:

Janzen, D. 1967. Interaction of the bull’s-horn acacia (*Acacia corigera* L.) with an ant inhabitant
(*Psuedomyrmex ferruginea* F. Smith) in eastern Mexico. University of Kansas Science

Kessler, A., and M. Heil. 2011. The multiple faces of indirect defences and their agents of

Krimmel, B. A. 2014. Why plant trichomes might be better than we think for predatory insects.
Pest Management Science 70:1666-1667.

Krimmel, B. A., and I. S. Pearse. 2014. Generalist and sticky plant specialist predators suppress

LoPresti, EF. 2015. Chemicals on plant surfaces are a heretofor unrecognized, but ecologically-
informative, class for investigations into plant defense. Biological Reviews, *in press*

Thomas, P. A. 1988. The function of insect-trapping by *Penstemon digitalis* and *Cirsium discolor*. Dissertation, University of Illinois at Urbana-Champaign, Illinois, USA.

SUPPLEMENTAL MATERIAL

Ecological Archives

Appendices A-E are available online: _______________________________

Appendix A: Table references and natural history of sticky plants

Appendix B: Entrapped insect data
Table 1: Plants which are known to entrap arthropods on adhesive surfaces (note: this does not include other methods of arthropod entrapment, e.g. pitchers). Table references and natural history literature and observation comprise Supplement 1.
<table>
<thead>
<tr>
<th>Family</th>
<th>Genera</th>
<th>Family</th>
<th>Genera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anacardiaceae</td>
<td>Rhus</td>
<td>Malvaceae</td>
<td>Abutilon, Gossypium</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Ageratina, Arnica, Brickellia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cirsium, Daubatia, Grindelia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haplopapus, Helichrysum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemizonia, Hieracium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holocarpa, Hulsia, Kyhosia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layia, Lessingia, Leucheria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Madia, Senecio, Trichogoniptis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boraginaceae</td>
<td>Eriodictyon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>Capsella</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromeliaceae</td>
<td>Vriesea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byblidaceae</td>
<td>Byblis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calceolariaceae</td>
<td>Calceolaria</td>
<td>Phymaceae</td>
<td>Mimulus</td>
</tr>
<tr>
<td>Cannabaceae</td>
<td>Cannabis</td>
<td>Plantaginace</td>
<td>Antirrhinum, Penstemon</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td>Cerastium, Dianthus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holosteum, Lychnis, Silene</td>
<td>Polemoniace</td>
<td>Allophyllum, Collomia</td>
</tr>
<tr>
<td></td>
<td>Spargularia, Stellaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalotaceae</td>
<td>Cephalotus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleomaceae</td>
<td>Cleome</td>
<td>Primulaceae</td>
<td>Primula</td>
</tr>
<tr>
<td>Cucurbitaceae</td>
<td>Sicand</td>
<td>Proteaceae</td>
<td>Protea</td>
</tr>
<tr>
<td>Dioncophyllaceae</td>
<td>Triphyophyllum</td>
<td>Ranunculaceae</td>
<td>Aquilegia</td>
</tr>
<tr>
<td>Droseraceae</td>
<td>Drosera</td>
<td>Rhamnaceae</td>
<td>Ceanothus</td>
</tr>
<tr>
<td>Drosophyllaceae</td>
<td>Drosophyllum</td>
<td>Roridulaceae</td>
<td>Roridula</td>
</tr>
<tr>
<td>Ericaceae</td>
<td>Arctostaphylos, Befaria</td>
<td>Rosaceae</td>
<td>Drymocallis/Potentilla</td>
</tr>
<tr>
<td></td>
<td>Comarostaphylos, Erica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kalmia, Rhododendron</td>
<td>Sapindaceae</td>
<td>Aesculus</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Croton, Dalechampia</td>
<td>Saxifragaceae</td>
<td>Heuchera, Micranthes</td>
</tr>
<tr>
<td>Family</td>
<td>Genus 1</td>
<td>Genus 2</td>
<td>Genus 3</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Adesmia</td>
<td>Cajanus</td>
<td>Saxifraga</td>
</tr>
<tr>
<td></td>
<td>Chapmannia</td>
<td>Ononis</td>
<td>Euphrasia</td>
</tr>
<tr>
<td></td>
<td>Phaseolus</td>
<td>Schizolobium</td>
<td>Verbasum</td>
</tr>
<tr>
<td></td>
<td>Stylosanthes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrophulariaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geraniaceae</td>
<td>Geranium</td>
<td>Pelargonium</td>
<td>Calibrachoa</td>
</tr>
<tr>
<td></td>
<td>Ribes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Wachendorfia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grossulariaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemodoraceae</td>
<td>Origanum</td>
<td>Salvia</td>
<td></td>
</tr>
<tr>
<td>Lamiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentibulariaceae</td>
<td>Genlises</td>
<td>Pinguicula</td>
<td>Stylidiaceae</td>
</tr>
<tr>
<td>Limeaceae</td>
<td>Limeum</td>
<td></td>
<td>Tofieldiaceae</td>
</tr>
<tr>
<td>Loasaceae</td>
<td>Eucnide</td>
<td>Mentzelia</td>
<td>Verbenaceae</td>
</tr>
<tr>
<td>Lythraceae</td>
<td>Cuphea</td>
<td>Lythrum</td>
<td></td>
</tr>
</tbody>
</table>

* carnivorous, sensu Spomer 1999; **hooked, not glandular, entrapping trichomes; ***protocarnivorous, sensu Spomer 1999

Rhycanthera in citation, synonymy unclear in ITIS.
FIGURE LEGENDS

Figure 1. Left panel: Arthropods entrapped on diverse sticky plants. A: Antirrhinum cornutum (Scrophulariaceae), Lake County, California, USA. B: Mimulus layneae (Phyrmaceae), Lake County, California, USA. C: Madia glomerata (Asteraceae), Nevada County, California, USA. D: Aquilegia eximia (Ranunculaceae), Lake County, California, USA. E: Boerhavia unk. sp. (Nyctaginaceae), Lambayeque, Peru. F: Arctostaphylus viscida (Ericaceae), Lake County, California, USA. G: Petunia x hybrida domestic (Solanaceae), Yolo County, California, USA. Right panel: Common arthropods of columbine. 1: Heliothis phloxiphaga and characteristic florivory. 2: Tupiocoris californicus nymph. 3: Hoplinus echinatus nymph. 4: two just-hatched Pselliopis spinicollis and their eggs. All photos: EFL.

Figure 2: Upper: Predator abundance on columbines with experimentally removed carrion and on controls with natural carrion abundance over the growing season. Lower: mean percentage reproductive structures damaged on columbines with experimentally removed carrion and controls with natural carrion abundance over the growing season. All error bars are means +/- SE. Asterisks (*) and **) indicate a significant increase in damage at that observation date due to carrion removal at P<0.05 and P<0.01 respectively.
Figure 1