
1.  Introduction
As the Anthropocene continues, predicting the extent of climate change impacts is increasingly crucial. The 
biogeochemical research community has a long, successful history of monitoring ecosystem carbon budgets (i.e., 
the balance between the atmospheric carbon they take up and what they emit) on local to global scales. This kind 
of monitoring has historically been accomplished with observatory sites all over the world; for example, eddy 
flux towers that use the turbulence of air movement to extrapolate fluxes of atmospheric gases and energetic 
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where it has been logistically impossible to collect high-resolution soil carbon flux data. With this array we 
collected over 10,000 individual flux estimates over almost two months, spanning the end of a dry season and 
the start of a wet season. With our successful deployment in situ, we demonstrate the potential for low-cost, 
autonomous, DIY sensors in improving resolution of soil carbon flux datasets (particularly in under-studied 
or logistically challenging systems). If implemented widely, such an improvement in data collection capacities 
could improve our understanding of ecological and climatic drivers of soil carbon flux dynamics on the local to 
global scale.

Plain Language Summary  Soil carbon flux, the rate at which carbon dioxide is exchanged between 
soil and the atmosphere, is a key feature of an ecosystem's carbon budget. However, measuring soil carbon 
flux rates at spatial and temporal scales that capture global ecosystems' ecological heterogeneity is extremely 
difficult due to the logistical constraints of manual data collection and high costs of commercial sensor systems. 
As such, many existing soil carbon flux datasets do not have the resolution necessary to identify small-scale 
ecological patterns in carbon dynamics, and datasets are distributed unevenly across easy-to-monitor 
ecosystems globally. We developed an inexpensive, robotic, autonomous soil carbon flux chamber that collects 
hourly data for as long as it is deployed. We built and deployed an array of 12 sensors in an ecologically 
complex central Kenyan savanna ecosystem. We collected almost two months of hourly data consisting of over 
10,000 soil carbon flux measurements, the largest and most high-resolution dataset collected in this system. 
Wider adoption of such open-access chambers could result in the collection of highly resolved soil carbon flux 
datasets in understudied systems worldwide, and greater understanding of the ecological contexts that mediate 
soil carbon flux.
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properties from an ecosystem. Today, there is a globally-distributed array of such towers monitoring fluxes, 
including carbon dioxide (CO2) (Baldocchi et al., 2001). These data allow researchers to calculate a landscape's 
CO2 emissions, and parameterize models with which to predict future emissions scenarios (Xiao et al., 2012).

In such terrestrial systems, one of the fluxes that makes up a carbon budget (and that can be used to validate 
ecosystem-scale carbon cycling models [Keenan et al., 2012; Phillips et al., 2017]) is soil carbon flux: the rate at 
which CO2 is exchanged between the soil and the atmosphere. Soil carbon flux consists of biotic soil respiration 
(the combined respiration of microfauna, macrofauna, and roots within the soil), and is moderated by air and 
soil temperature, atmospheric pressure, soil moisture, soil type, and soil morphology (DeCarlo & Caylor, 2020). 
On a global scale, soils contain three times as much carbon as either the atmosphere or vegetation (Schmidt 
et al., 2011). A high-quality understanding of patterns in soil carbon flux is therefore essential to understanding 
the drivers of landscape-scale terrestrial CO2 emissions.

On large scales, soil carbon flux is influenced by short- and long-term climatic processes, like individual weather 
events and seasonality (Delgado-Baquerizo et al., 2017; Munson et al., 2010) and by landscape-scale changes 
to ecosystem structure driven by fire (Pellegrini et al., 2020), land use (Wachiye et al., 2020), and agriculture 
(Lohila et al., 2003; Rochette et al., 1991). Critically, it is also influenced by extremely small-scale variability 
(Rodeghiero & Cescatti,  2008), like patches of vegetation (Stoyan et  al.,  2000), wind or water deposition of 
organic matter (Throop et al., 2020), and geomorphic idiosyncrasies like the many subsurface cracks, chimneys 
and pipes that form (Holden, 2005) or are engineered by large (DeCarlo & Caylor, 2019) and small (Ohashi 
et al., 2007; Otieno et al., 2011) fauna. Considering that soil carbon flux can make up between 30% and 80% of 
net ecosystem exchange (e.g., Davidson et al. (2006)), it is important to parse how distinct sources of small-scale 
ecological heterogeneity contribute to an ecosystem's overall carbon cycling dynamics.

The high-frequency (greater than 24 hr), high resolution (less than 1 km 2) datasets collected at eddy flux towers 
are critical to answering hydrological, earth system, and climatological questions (Baldocchi et  al.,  2001). 
However, this resolution remains too coarse for identifying the many small-scale, within-landscape drivers of soil 
carbon flux, and these datasets are less easily interrogated from an ecological (particularly community ecology) 
point of view (Fisher & Koven, 2020; Tuovinen et al., 2019). Fine-scale flux data can instead be taken manually, 
using commercial in situ non-steady-state survey chambers placed over the soil that monitor the buildup of CO2 
over time (Davidson et al., 2002). Autonomously-operating commercial chambers can also be installed in situ, 
operating at a user-defined frequency. However, these systems are extremely expensive (approximately 25–50k 
USD, not including soil chamber attachments); are often multiplexed and limited in spatial distribution; and (in 
the case of survey chambers) require multiple operators and the purchase of multiple systems to measure flux at 
high resolution in space or time. In landscapes with challenging environmental conditions like seasonal rainfall 
or wildlife, use of these systems introduces risk to the operator, the expensive instruments, or both. Therefore 
despite their availability, there are substantial barriers to using commercial soil carbon flux chambers across 
landscape-scale extents or at high spatial or temporal resolution (Jian et al., 2021).

Ecologists can overcome this challenge with a do-it-yourself (DIY) approach, by building autonomous soil 
carbon flux chambers from low-cost materials and CO2 sensors (Bastviken et al., 2015; Carbone et al., 2008, 
2011; Harmon et al., 2015). By reducing the cost of individual autonomous chambers, researchers can deploy 
distributed arrays of chambers operating simultaneously, and therefore capture small-scale heterogeneity in soil 
carbon flux. Such highly resolved datasets would more fully characterize dynamism in soil carbon flux, and 
could be interrogated through a community ecology lens. While some degree of accuracy or precision in raw CO2 
detection may be sacrificed when using low-cost CO2 sensors (compared to those in commercial options [Martin 
et al., 2017; Yasuda et al., 2012]), the capacity for collecting large scale, high resolution, ecologically meaning-
ful data at replications high enough to approach a landscape's representative fluxes is gained in return (Adachi 
et al., 2005; Pantani et al., 2020).

Here we present a design and analysis plan for an autonomous, robotic, non-steady-state soil carbon flux sensing 
chamber (a “fluxbot”). We deployed an array of 12 fluxbots in a central Kenya savanna ecosystem, in which 
ecosystem structure is predictably homogeneous on a large scale but heterogeneous on centimeter to meter scales 
(DeCarlo & Caylor, 2020). We argue that for ecologists (particularly community ecologists who aim to relate 
patterns in soil carbon flux to an ecosystem's structure and community), prioritizing reproducibility and replica-
tion with low-cost sensing is an exciting and viable path forward.
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2.  Methods
2.1.  Chamber Construction

We constructed each fluxbot with easy-to-find materials, purchased from online retailers, or hardware and elec-
tronics stores (Table S2). We fabricated the chamber of each from two lengths of 5 × 5″ square polyvinyl chloride 
(PVC) polymer pipe, cut to 7″ (chamber “body”) and 2.5″ (chamber “lid”), connected at one side (the chamber's 
back) with hinges (Figure S1 in Supporting Information S1). (For more details on construction, including addi-
tions of gaskets and tests for air-tightness when closed [Figure S2 in Supporting Information S1], see Texts S1 
and S2 in Supporting Information S1.)

We topped the lid with a custom-cut acrylic plate, using weather- and air-tight glue. We mounted the linear actu-
ator to the body and lid via long horizontal screws, screwed from the outside to the inside on the left side of each. 
This mounting allows for free rotational movement on each end of the actuator as it extends (opening the lid to 
90°) and contracts (sealing the chamber shut).

2.2.  Hardware

Once the chambers were built, we installed a custom hardware system in each lid, constructed from a micro-
controller (Pycom LoPy4, with Pycom Expansion Board), a calibrated (Text S3 in Supporting Information S1) 
non-dispersive infrared (NDIR) CO2 sensor (CozIR LP miniature 5,000  ppm CO2 sensor), a real-time clock 
(RTC; set to local time at our field site in Laikipia, Kenya) to ensure synchronized activity across all fluxbots, 
and a combined air pressure, temperature, and humidity sensor (Table S2). Data was written to a microSD card 
on the microcontroller.

We calibrated the CO2 sensors with a single-point calibration procedure, by sealing each sensor inside the SRC-2 
flux chamber attachment of a CIRAS-brand gas exchange system. We then set the calibration point to the CO2 
concentration detected inside the chamber by the CIRAS, after the concentration equilibrated and stabilized (see 
Text S3 in Supporting Information S1 for details).

We powered the electronics system with a V44 battery, which was charged with a 6W solar panel (Figure 1). 
We fixed all electronics in place to a custom acrylic mounting board (Figure S3 in Supporting Information S1), 
then fixed one of these “electronics systems” to the inside of each fluxbot lid from the top plate, with the CO2 
sensor  facing the inside of the chamber volume, and connecting the linear actuator (installed with screws to the 
chamber body and lid) to the microcontroller (Figure 2). The total cost of materials for one fluxbot was $361.71 
(US dollars) (Table S2), at least two orders of magnitude cheaper than the majority of commercially available 
options.

2.3.  Software

The fluxbots run on a series of MicroPython scripts designed to support synchronous measurements across an 
array of fluxbots for the duration of their field installation (Forbes & Caylor, 2021). Upon powering on, the flux-
bot's electronics system runs self-diagnostics; if a hardware error is detected, a light-emitting diode light blinks 
colors coded to specific errors until it is resolved (Text S4 and Table S1 in Supporting Information S1; visible in 
Figure 2). Upon successful diagnostics, the fluxbot begins its measurement schedule which loops every hour for 
as long as power is available. If power is lost temporarily, the loop begins again at the top of the next hour after 
power is restored. During the first 55 min of each hour, while open, the fluxbots collect ambient (CO2 concentra-
tion, temperature, humidity, and atmospheric pressure) data at regular intervals (Figure 3). For the last 5 min of 
each hour, while closed, the fluxbots collect high-frequency data (once per second) data (Figure S4 in Supporting 
Information S1).

2.4.  Field Installation, Data Collection

We deployed 12 fluxbots total in two treatment plots of a large-scale, long-term large herbivore exclusion exper-
iment (the Kenya Long term Exclosure Experiment or KLEE), located at Mpala Research Centre and Conserv-
ancy in Laikipia, Kenya. Within each of a fenced, large-bodied herbivore exclosure plot and an unfenced plot 
where large herbivores remain, we installed three fluxbots on open soil patches and three beneath the canopies of 
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the whistling thorn Acacia, Acacia drepanolobium (Figure S6 in Supporting Information S1). (A. drepanolobium 
have a mutualistic association with nitrogen-fixing bacteria in their root systems, and the soils beneath them are 
significantly enriched in bioavailable soil nitrogen [Fox-Dobbs et al., 2010].) We installed each fluxbot at least 
10 m apart to ensure spatial independence. We fastened each fluxbot's solar panel horizontally to an additional 

Figure 2.  Electronics, installed, viewed inside the lid from the underside.

Figure 1.  Wiring schematic, all components displayed on a plane.
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length of PVC to maximize sun exposure (Figure 3 and Figure S5 in Support-
ing Information S1).

The fluxbots remained in the field for approximately 2.5  months, over a 
period encompassing the end of a dry season and the start of a wet season 
(August 2019 to mid October 2019). We manually transferred the data 
from each fluxbot's microSD card to a Panasonic Toughbook laptop every 
3–4 days, and copied the data to a hard drive and cloud storage service imme-
diately upon return to the lab. The microSD cards are accessible when the 
fluxbots are open and removing it pauses fluxbot activity. The data download 
process takes several minutes at most; upon replacement of the microSD 
card each fluxbot boots up and resumes scheduled activity at the top of the 
next hour.

In addition to fluxbot data, in August 2019 we opportunistically collected 
soil carbon flux data manually from 12 round PVC collars installed adjacent 
to each fluxbot (visible in Figure 3 and Figure S5 in Supporting Informa-
tion S1). We collected these data using a CIRAS gas exchange system with 
SRC-2 chamber attachment between 9 a.m. and 4 p.m., totaling just over 200 
manually-collected flux measurements. We paired flux observations from 
co-located fluxbots and collars that occurred within 25 min of each other, 
and collated them to create a dataset of temporally- and spatially-associated 
fluxes (Text S7 in Supporting Information S1).

3.  Flux Calculations
3.1.  CO2 Observations

The NDIR sensor contained in our fluxbots observes the quantity of CO2 as 
a concentration in units of parts per million, 𝐴𝐴 [CO2]Obs , [ppm]. We convert 

𝐴𝐴 [CO2]Obs into a mass density of CO2, presented here as the following series of 
conversions for ease of replication.

If we were observing the buildup of 𝐴𝐴 [CO2]Obs in dry air, we would simply convert 𝐴𝐴 [CO2]Obs to mass density by 
multiplying it by the molar density of dry air and the molar mass of CO2. However, we account for the ratio of 
moist to dry air by calculating a humidity ratio to apply to the molar mass of air, using observed pressure, temper-
ature, and relative humidity (RH). To calculate this ratio we use Tetens formula to determine the water vapor 
saturation pressure in the chamber (pw, [kPa]) as a function of the observed air temperature (Ta, [C]),

𝑝𝑝𝑤𝑤 = 0.62198 ∗ 𝑒𝑒

(

17.27∗𝑇𝑇𝑎𝑎

𝑇𝑇𝑎𝑎+273.3

)

,
� (1)

and subsequently calculate the humidity ratio (xs) given pw and the atmospheric pressure measured empirically 
(pa, [kPa]):

𝑥𝑥𝑠𝑠 =
0.62198 ∗ 𝑝𝑝𝑤𝑤

𝑝𝑝𝑎𝑎 − 𝑝𝑝𝑤𝑤
� (2)

We then determine the humidity ratio for a given fractional relative humidity (RH, %, divided by 100) with RH 
measured at the sampling time:

𝑥𝑥 = 𝑥𝑥𝑠𝑠 ∗ (𝑅𝑅𝑅𝑅∕100)� (3)

Using the humidity ratio and gas law constants, we convert observed 𝐴𝐴 [CO2]Obs [ppm] to [kg/m 3]. The reference 
density of dry air [kg/m 3] is first calculated as

𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑝𝑝𝑎𝑎 ∗ 100

𝑅𝑅𝑎𝑎 ∗ (𝑇𝑇𝑎𝑎 + 273.15)
� (4)

Figure 3.  A fluxbot installed in the field, in its open position, with actuator 
fully extended. Collar for manual data collection at bottom right.
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where Ra is the gas constant of dry air (Table  1), and observed Ta [C] is 
converted to Kelvin. We use this reference density to calculate the moist 
air density [kg/m3], using the humidity ratio calculated at this observation's 
temperature, pressure, and RH, and the gas constant ratio between water 
vapor and air (c.f. Table 1):

𝜌𝜌𝑤𝑤 = 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟
1 + 𝑥𝑥

1 +

[

𝑅𝑅𝑤𝑤

𝑅𝑅𝑎𝑎

]

∗ 𝑥𝑥
� (5)

We calculate the molar concentration of moist air [mol/kg 3] according to

[𝑎𝑎𝑎𝑎𝑎𝑎]𝑚𝑚𝑚𝑚𝑚𝑚 =
1

𝑀𝑀𝑎𝑎

∗ 𝜌𝜌𝑤𝑤� (6)

where Ma is the molar mass of dry air (c.f. Table 1). Using the output of 
Equation  6, we convert CO2 in [ppm] to molar density [mol  CO2/m 3 air] 
according to

[CO2]𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ∗ [CO2]Obs� (7)

and using the molar mass of CO2 (c.f. Table 1) to convert molar density to mass density [kg CO2/m 3 air], accord-
ing to

𝜌𝜌CO2
= [CO2]𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑀𝑀CO2� (8)

Finally, the time varying mass of CO2 in the chamber, C(t) [kg], is found using the chamber volume, Vc [m 3] (c.f. 
Table 1), as

𝐶𝐶(𝑡𝑡) = 𝜌𝜌𝐶𝐶𝐶𝐶2
(𝑡𝑡) × 𝑉𝑉𝑐𝑐,� (9)

Individual values of 𝐴𝐴 𝐴𝐴CO2
(𝑡𝑡) , RH, and Ta are derived from 20-s averages of 𝐴𝐴 [CO2]Obs (Text S6 and Figure S7 in 

Supporting Information S1). To eliminate the introduction of bias from seven fluxbots whose pressure sensors 
were compromised after a rainfall event in late August, for each hour's atmospheric pressure measurement we 
calculated the mean atmospheric pressure across the other five fluxbots in the array, and used these to calculate 
flux for each hour for all the fluxbots in the array (Text S6 in Supporting Information S1).

3.2.  Key Parameters for the Fluxbot System

The parameters for the above flux calculations include values like “chamber volume” and “chamber surface area” 
that are specific to the design of these fluxbots and essential to calculation of flux for any chamber-based system. 
These also include constants related to the properties of CO2, air, etc. (Table 1).

3.3.  Flux Calculations

During an observation event, the system is sealed and the mass of CO2 in chamber is monitored for 5  min. 
Throughout the 5-min observation, we track C′(t) [kg], which is the time-varying mass of CO2 relative to the 
initial mass, C0 [kg], found according to

𝐶𝐶
′
(𝑡𝑡) = 𝐶𝐶(𝑡𝑡) − 𝐶𝐶0,� (10)

where C0 is the initial mass of CO2 in the chamber, which is derived from the ambient CO2 concentration, 𝐴𝐴 [CO2]𝐴𝐴 
recorded just prior to the initiation of a measurement. We estimate the flow rate (mass change per unit time) of 
CO2 into the chamber by fitting a first-order regression between every time of observation, ti, and each ith obser-
vation of relative CO2 mass, 𝐴𝐴 𝐴𝐴

′

𝑖𝑖
 .

𝐶𝐶
′

𝑖𝑖
= 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡𝑖𝑖 + 𝜖𝜖𝑖𝑖� (11)

Parameter Symbol Units Typical value

Chamber volume Vc m 3 0.002758

Chamber surface area Ac m 2 0.01455

Molar mass CO2 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶2
  kg/mol 0.044009

Molar mass dry air Ma kg/mol 0.0289628

Specific gas constant, dry air Ra J kg −1 K −1 287.058

Specific gas constant, water vapor Rw J kg −1 K −1 462.5

Gas constant ratio, water to air𝐴𝐴 𝑅𝑅𝑤𝑤

𝑅𝑅𝑎𝑎

  Unitless 1.609

Table 1 
Parameters Needed for Calculating Flux
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Because 𝐴𝐴 𝐴𝐴
′

𝑖𝑖=0
≡ 0 , it is given that the expected value of β0, E[β0], is equal to 

0 as long as we make the standard regression assumption that 𝐴𝐴 E
[

𝜖𝜖𝑖𝑖|𝐶𝐶
′

𝑖𝑖

]

= 0 .

We estimate the average flow of CO2 mass during each measurement period 
by taking the derivative of Equation 11 with respect to time, t, which yields

d𝐶𝐶 ′

d𝑡𝑡
= 𝛽𝛽1.� (12)

In many cases, CO2 concentrations (and, therefore, values of C′) in the cham-
ber are changing in a non-linear manner over the course of each 5-min meas-
urement interval. Because the CO2 concentration in the chamber changes over 
the period of observation, we note that the observed flow rate of CO2 into the 
chamber could also change as the gradient in 𝐴𝐴 [CO2] between the soil and the 
chamber shifts. This time-dependence in the evolution of C′(t) is accounted 
for by using higher-order terms according our regression between 𝐴𝐴 𝐴𝐴

′

𝑖𝑖
 and ti.

𝐶𝐶
′

𝑖𝑖
= 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡𝑖𝑖 + 𝛽𝛽2𝑡𝑡

2

𝑖𝑖
+ 𝜖𝜖𝑖𝑖� (13)

=𝛽𝛽0 + 𝛽𝛽1𝑡𝑡𝑖𝑖 + 𝛽𝛽2𝑡𝑡
2
𝑖𝑖
+ 𝛽𝛽3𝑡𝑡

3
𝑖𝑖
+ 𝜖𝜖𝑖𝑖� (14)

As in the linear case (Equation 11), we can estimate the time-varying flow 
of CO2 mass during each measurement period by taking the derivatives of 
Equations 13 and 14 with respect to t, which yield

d𝐶𝐶
′

𝑖𝑖

d𝑡𝑡
= 𝛽𝛽1 + 2𝛽𝛽2𝑡𝑡𝑖𝑖� (15)

=𝛽𝛽1 + 2𝛽𝛽2𝑡𝑡𝑖𝑖 + 3𝛽𝛽3𝑡𝑡
2
𝑖𝑖� (16)

Because we are seeking to obtain the best possible estimate of the initial rate of CO2 accumulation, we focus on 
our estimators for β1 of both the first- and second-order regression, which will always describe the initial rate of 
change in C′ within the chamber at the start of a measurement interval (i.e., when t = 0) (Hereafter, we will use 
“β1” to refer to the initial rate of change for either first- or second-order regressions.). In the case where observed 
CO2 accumulation rates are higher at the start of a measurement, the value of β2 for a second-order regression will 
be less than zero. In contrast, when β2 is greater than zero, it indicates an observation interval in which for some 
reason the rate of accumulation of CO2 in the chamber is increasing during the measurement interval. Overall we 
find that of the 10,107 fluxes, only 3 were calculated with a slope from a second-order regression whose β2 was 
larger than zero, indicating that for the overwhelming majority of fluxes the initial rate of change is the highest.

Equations 11, 15, and 16 provide three different examples of how to estimate β1, the value of dC′/dt when t = 0. 
In designing our data processing software, for each observation interval we determine a β1 estimate for both a 
first- and second-order polynomial regression. Between the two β1 estimates, we select the larger with which 
to calculate flux for that interval. For closed-chamber systems, not all accumulation curves are best described 
by a linear regression (e.g., Figure 4); in cases where linear regression is inappropriately applied to non-linear 
accumulation curves, fluxes can subsequently be underestimated (Kutzbach et al., 2007). Finally, the flux of CO2 
into the chamber for each measurement interval, 𝐴𝐴 𝐴𝐴CO2

 [kg m −2 s −1] is determined as the estimated initial rate of 
change of CO2 mass (the larger of the two β1 [kg/s] values) divided by the surface area of the chamber, Ac [m 2] 
(c.f. Table 1):

𝑓𝑓CO2
=

1

𝐴𝐴𝑐𝑐

d𝐶𝐶 ′

d𝑡𝑡
=

1

𝐴𝐴𝑐𝑐

𝛽𝛽1,� (17)

We conducted the above flux estimate calculations in Python, writing a custom script to batch-process our data-
set's observation intervals (Forbes & Caylor, 2021). To calculate the regressions for each observation interval, we 
defined a regression fit function for which the user defines “n” as the order of the polynomial used to fit the raw 
data: one (hereafter linear regression), two (hereafter quadratic), or more. We normalized our CO2 data to start 
at zero by subtracting the first CO2 value from each subsequent value in the array. We therefore also defined our 

Figure 4.  Two different measurement intervals taken by the same fluxbot 
(located in the “total wildlife exclusion” plot, at “open soil” site 2), 1 day 
apart at similar times in the morning. The left panel best fits a second-order 
polynomial regression, while the right panel best fits a linear regression. Gray 
points are raw data; salmon (left) or yellow (right) points are averaged with 
a 20 s rolling mean and the regression fitted to that averaged data. Data are 
transformed to begin at zero to emphasize the change in CO2 concentration 
over time.
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function to fit regressions with an intercept of zero (Fitting regressions without an intercept can result in negative 
R 2 values when data are noisy.). We also defined an error function, which calculates the difference between each 
time point's observed CO2 value and the predicted value from a regression.

Using the “optimize.leastsq” function from the “optimize” package of the SciPy library (with input parameters 
of the error function, an initial estimated value for the fit's slope, and the data to be fitted [i.e., t and C′]), we 
identified the fit with the smallest sum of squares for an observation interval. Once the best regression fits for 
each interval were identified, we extracted and compared their initial slopes (i.e., β1) and selected the larger for 
the flux calculation.

We defined a function that converted these β1 estimates to flux rates using the parameters in Table 1, as described 
in Equation  17. We included functionality to convert from mass of CO2 change over time and surface area 
([kg m −2 s −1]) to smaller metric units and also molar units (e.g., [μmol m −2 s −1]). Using the estimates of β1 and 
fitted values, we also calculated upper and lower 95% confidence intervals of each β1 estimate (and thus maxi-
mum and minimum flux estimates), each regression's R 2 (or goodness-of-fit), and the relative uncertainty of each 
flux estimate, as described below.

3.4.  Flux Confidence Intervals, Uncertainty

After determining β1 estimates for each flux interval's regression, we calculated the sum of squared deviations 
(SStt) from the mean for the length of the interval according to

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 =

𝑛𝑛
∑

𝑖𝑖=1

(

𝑡𝑡𝑖𝑖 − 𝑡𝑡
)2

� (18)

with n being the interval length, in total number of seconds. We subsequently calculated the variance of the 
regression, or the predicted values of CO2 concentration at each time point in the flux interval compared to the 
observed values, according to

𝑠𝑠
2

𝐶𝐶′ ,𝑡𝑡
=

(

1

𝑛𝑛 − 2

)

𝑛𝑛
∑

𝑖𝑖=1

(

𝐶𝐶
′

𝑖𝑖
− 𝐶̂𝐶

′

𝑖𝑖

)2

=
𝑆𝑆𝑆𝑆𝐸𝐸

𝑛𝑛 − 𝑝𝑝
� (19)

where n − p is the least square's degrees of freedom (with p the number of parameters used to calculate the 
regression; 2 or 3, for linear and quadratic regressions respectively) and SSE, or the error sum of squares, is 
calculated  with

𝑆𝑆𝑆𝑆𝐸𝐸 =

𝑛𝑛
∑

𝑖𝑖=1

(

𝑓𝑓 − 𝐶𝐶
′

𝑖𝑖

)2

� (20)

when f is the predicted value of CO2 at a given time step i. Using 𝐴𝐴 𝐴𝐴
2

𝐶𝐶′ ,𝑡𝑡
 we then calculated the variance of β, 

according to

𝑠𝑠
2

𝛽𝛽
=

𝑠𝑠
2

𝐶𝐶′ ,𝑡𝑡

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡

� (21)

where the numerator is determined by Equation 19 and the denominator by Equation 18.

We subsequently determined the upper and lower 95% confidence intervals for each regression's β1 estimate 
according to

𝛽𝛽1ConfidenceInterval(±95%) ≅ 𝛽𝛽1 ± 2

√

𝑠𝑠𝛽𝛽
2

1
� (22)

Using the upper and lower confidence intervals and the initial β1 estimate we could calculate a minimum and 
maximum flux for each flux estimate. With these values we were able to determine the relative flux uncertainty 
of each flux estimate, first by calculating the absolute flux uncertainty according to

absoluteuncertainty =
|

|

|

|

maximumfluxestimate −minimumfluxestimate

2

|

|

|

|

� (23)
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We divided this absolute uncertainty by the flux estimate itself; this multi-
plied by 100 is the uncertainty of the flux estimate relative to its size, or 
its relative uncertainty. To account for negative flux estimates, we took the 
absolute value of relative flux uncertainty.

We calculated R 2 of each regression for all observation intervals. We first 
calculated SSyy, the total sum of squares of the difference between the 
observed values of CO2 concentration and the average value of CO2, accord-
ing to

𝑆𝑆𝑆𝑆𝐶𝐶′𝐶𝐶′ =

𝑛𝑛
∑

𝑖𝑖=1

(

𝐶𝐶
′

𝑖𝑖
− 𝐶̂𝐶 ′

)2

� (24)

We used the output as a term in the numerator and denominator for calcu-
lating each regression's R 2, and the error sum of squares from Equation 20, 
according to

𝑅𝑅
2
=

𝑆𝑆𝑆𝑆𝐶𝐶′𝐶𝐶′ − 𝑆𝑆𝑆𝑆𝐸𝐸

𝑆𝑆𝑆𝑆𝐶𝐶′𝐶𝐶′

� (25)

4.  Quality Assurance/Quality Control (QA/QC)
We removed 1,366 flux observations with incorrect timestamps. In addition, we treated the three weeks of data 
collection that occurred between 2 August 2019 (fluxbot installation) and 23 August 2019 (on which date the 
fluxbots were re-calibrated) as a test period, and removed these data from the final dataset. This period occurred 
immediately after the fluxbot array's installation and therefore likely included time during which the soils were 
disturbed (and flux could be artificially high for days or weeks [Davidson et al., 2002]). Additionally, this period 
included post-installation troubleshooting that involved some disturbance, like several unusually early rainfall 
events in August that required we remove the electronics systems from each fluxbot and paint the connections 
with clear nail polish as a conformal coating to improve weatherproofing.

We removed all the data collected in October for a single fluxbot whose hardware shorted at the end of Septem-
ber 2019, likely due to water damage from one of several heavy rain storms that occurred around that time. We 
continued collecting data at that site by rotating lids from “donor” fluxbots (e.g., a randomly-selected fluxbot's 
lid was removed and placed on the broken fluxbot's chamber) for 2–3 days each. These 229 fluxes were analyzed 
separately to explore fluxbot variability at the same site over time.

Finally, to identify and remove any remaining spurious flux calculations (e.g., calculated with compromised 
raw data), we implemented an automated quality assurance and quality control (QA/QC) process in the data 
processing software. All flux intervals were examined for a total of seven possible errors, listed in order of 
severity:

1.	 �net change in atmospheric pressure greater than 10 hPa;
2.	 �net change in temperature greater than 2.5C;
3.	 �extraordinary maximum CO2 values (e.g., that could be expected from errors ranging from electronic failure 

to heterotrophic respiration inside the chamber from a trapped invertebrate);
4.	 �whether the measurement interval encompassed a minimum of 4.5 min, or 270 total observations;
5.	 �if the net change in CO2 over a measurement interval was less than 10 ppm, indicating possible leakage or 

imperfect seal;
6.	 �if the net difference in CO2 from start to finish of a measurement interval was negative, indicating a greater 

possible likelihood of leakage or CO2 uptake from an errant photosynthesizing plant inside the chamber;
7.	 �if the last recorded value of CO2 was less than the mean, and the first recorded value was greater than the mean.

These seven errors were each assigned a value of [1 * an increasing order of magnitude]; a single flux estimate could 
therefore “earn” an error score of up to 1,111,111 (e.g., adding 1, 10, 100, 1,000, 10,000, 100,000, and 1,000,000). 
Any flux estimate with an error score of more than 11 was discarded (e.g., fluxes that had either high pressure or 
temperature buildup, as well as those that had both high pressure and temperature buildup, were kept in the final data-
set). We removed a total of 725 flux estimates for failing QA/QC (Table 2; Figure S8 in Supporting Information S1).

Reason for removal QAQC flags Number removed

3 100 10

4 1,000 16

5 and 3 10,100 429

5 and 3 and 2 10,110 11

5 and 4 11,000 1

6 100,000 248

6 and 2 100,010 7

6 and 4 101,000 3

Table 2 
The Total Number of Removed Flux Estimates After Quality Assurance/
Quality Control (725), Broken Down by the Reasons for Which They 
Were Removed (e.g., Which of the Seven Errors Were Flagged), the Total 
Accumulated Error Score Associated With Those Reasons, and the Number 
Removed for Each
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5.  Results
Our array of 12 fluxbots collected 10,107 quality-controlled estimates of soil CO2 flux. Mean flux across all 12 
fluxbots, over time, was 4.05 μmol/m 2/s, and ranged from −3.70 to 46.40 μmol/m 2/s. Of the 10,107 flux esti-
mates, 334 were below zero; however of those negative fluxes, the vast majority (87%) occurred between zero and 
−1, aka clustered around zero (Figure 5). Two-thirds of the fluxes were estimated with the quadratic regression's 
β1; these fluxes were generally higher than those calculated using the linear regression's β1 (Figure 6).

5.1.  Patterns of Flux

Raw CO2 concentration data demonstrated distinct diel patterns over time (Figure 7a), with atmospheric CO2 higher 
in nighttime hours than day. Fluxes also demonstrated distinct diel patterns, with the highest fluxes occurring at 
night and lowest at midday or mid-afternoon (Figure 7b); a simple two-sided t-test comparing daytime fluxes (8 a.m. 

Figure 5.  Density distribution of fluxes from entire deployment period. The inset boxplot represents the dataset's dispersion 
and skew, with the central vertical line indicating the median (3.14 μmol/m 2/s); all points in the distribution located to the 
right of the maximum observed non-outlier value (the right “whisker”) are, statistically, abnormally high occurrences of flux. 
The inset lognormal density distribution shows the distribution of the (positive only) log-transformed fluxes. The vertical red 
dashed line indicates the dataset's overal mean (4.05 μmol/m 2/s).

Figure 6.  Density distribution of fluxes calculated with a β1 value derived from a linear regression versus a quadratic 
regression.
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to 4 p.m., or 2 hr after sunrise and 2 hr before sunset) and nighttime fluxes (8 p.m. to 4 a.m.) revealed consistently 
higher fluxes in nighttime hours (mean 4.41 μmol/m 2/s) than in daytime hours (mean 3.74 μmol/m 2/s) (p < 0.001).

Fluxes collected from beneath A. drepanolobium canopies (mean 3.69 μmol/m 2/s) were lower on average than 
those collected from open soil patches (mean 4.31 μmol/m 2/s) (p < 0.001); this difference was driven by time 
of day, with nighttime fluxes increasing significantly at open soil patches (Figure S9 in Supporting Informa-
tion S1). Fluxes collected from the treatment plot open to all large-bodied herbivores (mean 4.843 μmol/m 2/s) 
were consistently higher than those collected from the fenced exclosure plot (mean 3.589  μmol/m 2/s) 
(p = 0.001).

5.2.  The “Rotating Lid” Experiment

As described in Section 4, we removed 229 fluxes from the dataset due to their being collected at a fluxbot that 
received “donor” lids every 2–3 days for the month of October. We visualized these data separately to explore 
variability in fluxbot lid performance at the same location. Ambient CO2 detection varied by donor lid, indicating 
between-fluxbot variation in absolute CO2 detection across the array. However, fluxes were consistently in the 
same range during the entire period, no matter the identity of the donor lid and their ambient CO2 detection accu-
racy (Figure S12 in Supporting Information S1).

5.3.  Relative Flux Uncertainty and Model Fits

We visualized each flux estimate against its relative flux uncertainty, and its regression's R 2 value. We found 
that relative flux uncertainty was generally low, and that the highest uncertainties tended to be associated with 
fluxes at, near, or below zero (Figure S11a in Supporting Information S1). Indeed, the vast majority (92%) of our 
flux estimates had relative flux uncertainties lower than 25%. While 164 flux uncertainties were extremely high 
(over 100%), 58 of their associated flux estimates were negative, and 151 were associated with fluxes less than 
0.15 μmol/m 2/s (i.e., clustered extremely close to zero).

Figure 7.  (a) Raw CO2 concentration data, collected from a single fluxbot over 6 days in September 2019. Gray points are 
untransformed raw CO2; salmon points are transformed with the 20 s averaging window. (b) Fluxes, calculated from the 20 s 
averaged CO2 data. For both panels, green dotted lines indicate each day's midnight hour.
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Seventy-one percent of all flux estimates were associated with an R 2 value greater than 0.90, indicating generally 
high “goodness of fit” of the regressions selected to estimate flux (Figure S11c in Supporting Information S1). 
9% of flux estimates were associated with negative R 2 values. However, over one third of the flux estimates 
associated with these negative R 2 values clustered around zero (e.g., between 0 and −1 μmol/m 2/s). A Spear-
man's correlation between R 2 and flux estimate was relatively high (correlation coefficient = 0.62). The mean R 2 
asso ciated with fluxes calculated using a linear β1 was 0.47, while mean R 2 associated with those calculated using 
a quadratic β1 was 0.73, indicating that quadratic regressions were generally better fits for the data of steeper 
CO2  accumulation curves (also see Figure 6).

Eighty-six percent of flux estimates associated with lower (here, less than 0.5) R 2 values nonetheless also had low 
relative flux uncertainty (again, less than 0.5) (Figure S11b in Supporting Information S1). Only 3.4% of all flux 
estimates had both a low R 2 and high relative uncertainty.

5.4.  Comparison With Manual Data Collection

We were unable to directly compare the data we collected using the manual CIRAS flux chamber to the fluxbot 
dataset, given that the measurements were not taken on the same footprint of soil. Nevertheless we conducted a 
comparison of the two datasets to explore mechanisms of difference. The mean for CIRAS observations paired in 
time (within 25 min) and space (within 20 cm) with fluxbot observations was 1.58 μmol/m 2/s, with a median of 
1.38 μmol/m 2/s; the coefficient of variation was 0.47. The mean for fluxbot-collected fluxes matched with those 
collected manually was 3.50 μmol/m 2/s, with a median of 2.56 μmol/m 2/s; the coefficient of variation was 0.98 
(i.e., a larger spread) (Figure S13 in Supporting Information S1). A Goodman-Kruskal gamma correlation, which 
reduces the influence of outliers (e.g., “hotspots” of flux), indicated a weakly negative correlation between the 
two methods (−0.20, p = 0.001).

6.  Discussion
We collected 10,107 flux observations over approximately two months with the fluxbot array. To our knowledge, 
this is the largest and most comprehensive dataset of soil carbon flux of this ecosystem. In KLEE, it takes an 
average of 10 min to collect an observation using a manually-operated commercial survey chamber, including 
travel between collars (Forbes, personal observation). It would therefore take over 1,680 hr to manually collect 
the same number of observations, which would still exclude key time periods during which manual collection is 
risky or infeasible (night, after rainfall). Previous studies here therefore prioritized either high spatial resolution 
and extent (Forbes unpublished data), or repeated measures at fewer sites (DeCarlo & Caylor, 2020).

We were also able to distribute our array in a long-running community ecology experiment, and across distinct 
ecological structural features known to be mediated by the presence or absence of large wildlife (e.g., Charles 
et al., 2017; Young et al., 2018). This strategy demonstrates that a distributed array can be leveraged by commu-
nity and wildlife ecologists, allowing the broader ecology community to “animate the carbon cycle” (Schmitz 
et al., 2018) by interrogating datasets collected across community-level experimental contexts, climate or rainfall 
gradients, land-use change or wildlife loss, space-for-time successional gradients, and more.

We observed significantly higher average flux rates at night than during the day (Figure 7b). While unusual, 
such a diel pattern is not unheard of in tropical ecosystems, where soil carbon flux may be more tightly coupled 
to moisture than to temperature (Otieno et al., 2011; Zhao et al., 2021). Given that dew is a significant source 
of moisture in this savanna (Ngatia et al., 2014), evening dew formation could be acting as a daily “drying and 
re-wetting” mechanism, spurring higher fluxes at night (Figure S10 in Supporting Information S1). It is also 
likely that the characteristic surface and subterranean cracking of this vertisol mechanically facilitates thermal 
convection when ambient air temperatures drop (Figure S16 in Supporting Information S1), further enhancing 
nighttime fluxes and perhaps producing dynamic “hotspots” of high flux (DeCarlo & Caylor, 2020).

Within this cyclical diel pattern, we observed that deployment location influenced flux rates. Fluxbots located in 
open areas detected higher fluxes than those underneath A. drepanolobium trees, and particularly at night (Figure 
S9 in Supporting Information S1). Fluxbots in the unfenced plot, open to large-bodied herbivores, detected higher 
fluxes than those in the fenced exclosure plot. While not in the scope of this paper, we can theorize on the inter-
acting biological, geological, and edaphic mechanisms driving these patterns. For example, biocompaction from 
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megafauna like elephants produces deep, layered vertical cracks in the soil, thus higher average fluxes and more 
frequent high outliers (DeCarlo & Caylor, 2020). We speculate that since biocompaction from animal movement 
in the unfenced plot is greater than in the fenced herbivore exclusion plot, and is also likely greater in open areas 
than it is under tree canopies, it facilitates higher average and maximum fluxes and amplifies nighttime thermal 
convection effects in those locations.

6.1.  Comparison With Manual Survey Data Collection

Due to differences in the shape and size of the fluxbot and CIRAS chambers, it was not possible to validate flux-
bot performance by manually measuring flux at each fluxbot's exact footprint (Savage & Davidson, 2003) and we 
relied on measurements taken adjacent to each fluxbot for comparison (Text S7 in Supporting Information S1). 
These measurements, though adjacent in space and time, were ultimately not comparable (Figure S13 in Support-
ing Information S1). Different shapes and sizes of chambers can also result in different estimates of the same flux 
(Pumpanen et al., 2004), making direct comparison even on the same footprint difficult.

However, high spatial variability in soil carbon flux is not uncommon (Fóti et al., 2016; Wang et al., 2021). Mark-
edly different, simultaneous fluxes can occur centimeters apart (Davidson et al., 2002), with sub-centimeter “hot 
spots” due to dynamic incursions: soil aggregates, gaps or cracks, and soil fauna activity or engineering (Ohashi 
et al., 2007; Stoyan et al., 2000). The clay-rich vertisol in KLEE is particularly dynamic, forming cracks from 
drying (Somasundaram et al., 2018) and faunal activity (DeCarlo & Caylor, 2019), which can locally increase 
soil carbon flux by orders of magnitude (DeCarlo & Caylor, 2020) even between spatially close (less than 15 cm) 
sampling sites (Rochette et al., 1991). Given the characteristics of KLEE soils we suggest that “hot spot”-inducing 
factors likely account for some lack of fidelity between fluxbot and CIRAS estimates.

An alternative hypothesis is that the array included “hot bots” whose sensors erroneously detected steeper gains 
in raw CO2 than the higher-accuracy sensor in the CIRAS. To determine whether fluxbots that consistently 
detected large daily ranges in atmospheric CO2 concentration also consistently estimated higher fluxes than 
the CIRAS, we plotted the fluxbots' average daily CO2 amplitude (to characterize each fluxbot's sensitivity to 
change in CO2) against the ratio of its paired fluxbot and CIRAS flux estimates. However, we did not see such 
evidence of “hot bots” (Figure S14 in Supporting Information S1). Those fluxbots with the largest daily ranges 
were associated with flux estimates that were comparable to, or even underestimated, CIRAS estimates. Some 
fluxbots with lower daily ranges were also associated with relatively comparable flux estimates, but others were 
associated with fluxbot estimates that were (on average) larger than their paired CIRAS estimates. We deduced 
that whatever is causing dissonance between fluxbot and CIRAS estimates is likely biological or environmental 
variability (e.g., “hot spots”), as described above, than “hot bots” with over- (or under-) sensitive CO2 sensors.

6.2.  Uncertainty and Percent Error in Flux

We reason that initial rates of increase are the least likely to result in an underestimate of true flux, due to the possi-
bility of pressure buildup inside a closed chamber reducing the diffusion gradient of CO2 from the soil over time 
(Baneschi et al., 2023; Kutzbach et al., 2007; Pumpanen et al., 2004). We thus assumed that the higher initial rate of 
increase (β1) between the linear and quadratic regressions of a given CO2 accumulation interval is most representa-
tive of real flux, regardless of the chosen regression's R 2 (but see Carbone et al., 2008, 2011). Flux estimates whose 
associated R 2 is low may simply indicate a noisy accumulation interval, resulting from environmental variability 
or other unobserved variables. Alternatively, a low R 2 could indicate that a regression's slope was close to or at 
zero, when low R 2 values are statistically certain. This includes the few (9%) negative R 2 values in the final dataset; 
because we normalized raw CO2 accumulation intervals to begin at zero, we also set all regressions' intercepts to 
zero. With noisy data, for which subtracting the initial value of CO2 may (e.g.) have resulted in data scattered around 
zero, the resulting regression line may be forced away from a fit with the lowest possible error sum of squares.

We argue that relative flux uncertainty, predicated as it is on initial rates of CO2 accumulation rather than a 
regression's goodness of fit, provides a more meaningful assessment of flux estimate accuracy. 86% of our flux 
estimates associated with low R 2 values had fairly low relative flux uncertainty (under 0.5). However, estimates 
with high relative uncertainty are still likely to be representative, but of low flux rates; CozIR LP Miniature 
sensors have a typical accuracy of ±30 ppm, meaning that shallow accumulation curves will produce worse-fitting 
regressions and higher relative error. As such we also did not eliminate flux estimates with high relative flux 
uncertainty, considering that the few flux estimates with high relative uncertainty were close to zero. While very 
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low flux estimates may therefore have more uncertainty, we contend that they are no less representative and that 
removing them would unduly bias the dataset toward higher fluxes.

6.3.  Inter-Fluxbot Variability in Ambient CO2 Detection

There is clearly variability across the sensors in their ability to detect absolute CO2, and sensor drift over time 
(Text S8 and Figure S15 in Supporting Information S1). However, the distribution of flux estimates collected 
with the fluxbots (Figure 5) is consistent with those from studies of this system and other tropical sites (Courtois 
et al., 2019; DeCarlo & Caylor, 2020; February et al., 2020; Konaté et al., 2003; Poth et al., 1995). In addition, in 
our study of rotating “donor” lids at a single chamber location in October 2019 (Text S8 in Supporting Informa-
tion S1), randomly-selected lids detected consistent fluxes despite also collecting characteristically different raw 
CO2 concentration data (Figure S12 in Supporting Information S1). As fluxes are calculated by integrating net 
change in CO2 over time, this experiment demonstrated that the fluxbots are consistent in observing net change 
despite variation in absolute CO2 detection (Bastviken et al., 2015).

Also using a CozIR brand sensor, Helm et al. (2021) observed offsets in individual sensors' measurements of raw 
CO2 concentrations in the field. However, they also observed that net changes in CO2 were consistently observed 
between sensors with differing ambient baselines (Helm et al., 2021). While we did not test each fluxbot lid on 
each fluxbot body, given the results of our donor lid experiment and support from the literature we feel confident 
in the fluxbots' ability to accurately capture soil carbon flux.

6.4.  Further Development

The goal of our fluxbot array was to improve data collection capacities across large spatial extents with high 
spatial and temporal heterogeneity. While we have demonstrated the fluxbot array's utility in achieving that goal, 
there are key faults to our design that can be improved upon. For example, the CO2 sensors demonstrated signif-
icant offsets in ambient CO2 detection across the array. While our “hot bot” analysis demonstrated that it was not 
likely in this case (Figure S14 in Supporting Information S1), variation in offset within an array could result in 
variable detection of the same dCO2, given the possibility for nonlinear absorbance of CO2 in different models of 
inexpensive NDIR sensor (see Yasuda et al., 2012).

We suggest that, no matter the sensor chosen, adopters of our design adjust the software's collection of ambient 
CO2 concentration to one single period of at least 20 s (per our Allan variance analysis) prior to chamber closure. 
These improved ambient atmospheric CO2 data could be used to cross-validate ambient CO2 detection across 
every fluxbot deployed in a landscape, leveraging the possibilities of a networked array yoked by a communica-
tion hub that can receive data from and send updates to each fluxbot. To further harden the system against mois-
ture or inclement weather, we suggest conformal coating, dip-coating, or shrink-wrapping the finished electronics 
systems' connections, and using a more weather-resistant temperature and humidity sensor (e.g., Adafruit's 
SHT-30 with a tightly-woven mesh cover).

We calibrated our sensors with a single-point calibration and using the CIRAS and SRC-2 chamber to ensure 
that we could recalibrate with the identical method in the field, where an airtight chamber and canisters of 
CO2 standards are difficult to procure and transport. Due to the observed variability in absolute CO2 detection 
across the array, however, we recommend that adopters of our design conduct an initial in-lab calibration of each 
sensor with known standards. We also recommend conducting regular recalibrations every two to 3 weeks (Helm 
et al., 2021). Adopters of our design could also use the “auto-zero” setting available on CozIR brand sensors, 
which when enabled, re-zeros the sensor daily at a predetermined time during which atmospheric CO2 concentra-
tion is stable; we suggest performing field reconnaissance prior to fluxbot deployment to identify an appropriate 
re-zero time.

To monitor sensor drift at a slightly higher overall cost, we suggest that a random subset of fluxbots in an array 
receive a duplicate CO2 sensor, against which the main sensor could be compared and monitored for drift. Lastly, 
while we did not observe noticeable drift in time across our array, to ensure continued temporal comparability 
we suggest that researchers collecting data over longer time periods determine whether RTC drift occurs before 
deployment.

We experienced significant difficulty in producing a dataset of CIRAS-derived flux estimates against which to 
validate fluxbot-derived flux estimates. As a result, these datasets were not directly comparable. We suggest that 
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researchers seeking to validate their fluxbots' performance consider an adapter collar, fitted on one side to the size 
and shape of the commercial chamber and on the other to the fluxbot body, to take data on the same footprint. 
Alternatively (and given the inherent difficulties in comparing flux estimates taken with chambers of different 
provenance [Pumpanen et al., 2004]) we recommend the use of more adaptable gas exchange instruments (e.g., 
LI-COR 7810 or Los Gatos Research systems), and connecting tubing from the instrument itself to the fluxbots' 
chamber, to take measurements directly from the fluxbots' own internal volume.

6.5.  Benefits of the Fluxbot Array

CozIR and other inexpensive sensors have been used extensively in instrument development and data collection 
from greenhouses to forests (Changqing et al., 2018; Folea & Mois, 2015; Gibson & MacGregor, 2013; Gong 
et al., 2013; Helm et al., 2021; Wen & Li, 2013). The drawbacks to inexpensive sensors are well known, and can 
be adjusted for with more widespread field-based experimentation and improvements like those described above. 
We argue that the advantages of inexpensive sensors for distributed soil carbon flux sensing vastly outweigh the 
costs.

Soil carbon flux datasets that capture small-scale heterogeneity can also validate and reduce uncertainty as 
parameters in large-scale models of carbon cycling (Keenan et al., 2012). While we designed this tool from the 
perspective of community ecologists, whose goals increasingly include connecting biodiverse animal communi-
ties to carbon cycling, we also argue that the approach can be useful to scientists seeking to better parameterize 
larger-scale carbon models.

An array of independently-operating fluxbots can be expansive at a fraction of the cost of commercial chambers, 
increasing researchers' capacity for high-resolution data collection and their statistical likelihood of converging 
on a landscape's mean representative flux (despite the possibility of increased variability for a single flux obser-
vation). Critically, this approach offers the opportunity for ecologically-relevant, systematic deployment strate-
gies that capture small-scale heterogeneity within functionally complex environments. Expanding the scales at 
which we collect carbon flux datasets could illuminate the mechanisms by which communities respond to and 
produce heterogeneity in carbon dynamics (Chave,  2013), and be another method for “animating the carbon 
cycle” (Schmitz et al., 2018).

6.6.  Conclusions

Using the fluxbot array, we identified an unusual pattern of high nighttime flux driven by edaphic characteristics of 
this savanna. Deploying fluxbots at high spatial resolution, at ecologically-distinct landscape features, and within 
a longstanding animal community experiment allowed us to further consider the mechanisms that drive fine-scale 
variability in soil carbon flux, including direct (compaction and bioturbation [DeCarlo & Caylor, 2019]) and indi-
rect (changes to ecosystem structure like tree abundance [Sitters et al., 2020]) effects of the wildlife community. 
Here we demonstrate a path forward for inexpensive collection of ecologically “big” soil carbon flux data.

The fluxbot design and processing software is openly accessible. We hope that other researchers' replication of 
our approach will demonstrate that high-resolution data collection is accessible even on a limited project budget. 
The generation of highly-resolved datasets with distributed fluxbot arrays, particularly in understudied ecosys-
tems, will better our collective understanding of how patterns of soil carbon flux at small scales contribute to 
ecosystem carbon dynamics globally (Chave, 2013).

Data Availability Statement
The raw data generated by the fluxbots, as well as the processed flux data calculated from these raw data, is 
available at the archived project Github repository (repository found at the Zenodo DOI: https://doi.org/10.5281/
zenodo.7650956) (Forbes & Caylor, 2021). Software that runs the fluxbots can be found at the project repository 
in a submodule run by coauthor VB, labeled “hardware.” All figures were generated in R, scripts for which can be 
found at the repository, with an R project (.Rproj) in a folder labeled “figures_Rscripts.” Software to process flux 
data from raw data inputs can also be found at the repository in the main project (“fluxbot.py”). Also in the main 
project are scripts used to calculate Allan variance, generate the fluxbot events table from raw data, and compare 
fluxbot and CIRAS data; a PDF of the PP Systems CIRAS manual; and a README.md.
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